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Abstract
A general model is established for the analysis of acoustic phonons in an
arbitrarily oriented piezoelectric super-lattice (SL). Analytical expressions are
derived allowing the dispersion relation, transmission (T ) and reflection (R)
properties of the phonons to be numerically calculated for any incidence
angle. Numerical investigation is exemplified for the (111) GaAs/AlAs SL with
incidence in the (1̄10) plane. The obtained band structures confirm that the
stop bands for both the shear horizontal and the coupled longitudinal and shear
phonons appear inside the folded Brillouin zone, contrary to the (100) SL case in
which they appear at the zone centre and edges. Both classical dispersion curves
and Floquet slowness diagrams are used to present the edges of the Brillouin
zones. Locations and widths of the stop bands inside the folded zones, as well
as the T and R rates taking into account mode conversion, are studied as a
function of frequency and incidence angle.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The physical phenomena related to acoustic phonons in both general one-dimensional
multilayered elastic structures and 1D-super-lattices (SL) [1–11] have been the subject of
intensive studies for several decades. A periodic SL has mechanical filtering effects on the
propagation of high frequency acoustic phonons, and the basic transmission and reflection
characteristics of phonons in such a structure are intimately related to the phonon dispersion
relations. However, due to the complexity of the mathematics describing the acoustic
propagation in anisotropic elastic media, most of the previous studies assumed the constituent
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materials to be isotropic, and considered either only the shear horizontal (SH) mode or were
limited to the normal incidence of phonons in order to be able to analytically tackle with
the problem. Dispersion curves and the transmission rate of acoustic phonons in the (001)
GaAs/AlAs SL are calculated for an arbitrary propagation direction using the continuum
approximation with the elastic anisotropy included [3]. Both normal and oblique incidence
of phonons in a GaAs/AlAs SL with a (111) interface have been investigated by Kato [6].
However, he studied the only SH mode, which is uncoupled from the other ones when the
propagation is in the (1̄10) plane with a polarization in the [1̄10] direction parallel to the (111)
interface. Some studies carried out very recently for 2D phononic crystals allow the inclusion
materials to be anisotropic [12, 13] and/or piezoelectric [14, 15].

In this paper we present a general model allowing the analysis of phonon properties in
an arbitrarily oriented piezoelectric SL. In particular, we extend Kato’s study [6] to other
modes of phonons in the same structural configuration. We point out immediately that we are
interested here only in the acoustic phonons in piezoelectric materials within the framework of
the quasi-static approximation, but not the optical ones as reported recently by some other
researchers [16–18]. In section 2, we briefly recall some basic relations of the transfer
matrix and ordinary differential equation (ODE) formalisms [19, 20] in order to introduce
the field variables and to establish the general expressions for some important matrices that the
subsequent development will need. Following this approach, valid for any layered structures
with homogeneous planar layers, we first obtain, for a single layer and as a function of its state
matrix, the local field solutions which automatically satisfy the field continuity conditions at
layer interfaces. Section 3 is devoted to the phonon dispersion properties directly linked to the
unit cell transfer matrix of the SL. Two forms of the dispersion relations will be presented for
quasi longitudinal (L) and quasi shear transverse (T) polarized phonons, which are coupled
to each other and with the electric field. Numerical examples are presented to illustrate the
distinct characteristics of the coupled phonons as compared to the SH ones by considering
a (111) GaAs/AlAs SL. We deduce in section 4 formal expressions of the transmission and
reflection rates for the coupled phonons, taking into account the interaction and conversion
between L and T modes. More numerical results are given in section 5 to show the specific
dispersion and interaction properties of the coupled phonons. Conclusions are summarized in
section 6.

2. ODE-based modelling and transfer matrix

A perfect SL is a 1D periodic structure with an infinite number of identical unit cells made of
a finite number of layers each with finite thickness. A finite SL has a cell structure identical
to the perfect SL but with a limited total length, i.e. the cell number is finite. A third form
of SL structure is the semi-infinite SL, identical to a perfect SL except for the presence of a
plane surface cutting the original SL into two parts; the surface can be either traction-free or in
contact with a different medium. In this paper we are mainly concerned with the first two cases,
though the modelling can be easily adapted to studying the third one with little modification.
Figure 1 depicts the schematic of the SL structure that we consider in this paper. The unit cell
of the periodic part consists of the GaAs and AlAs layers with a thickness of, respectively, h1

and h2; the substrate of the structure is assumed to be made of GaAs and the detector made of
AlAs, both materials are (111)-oriented in the thickness direction, as in Kato [6].

However, these specifications are introduced only with regard to the numerical examples
given to illustrate the model applications. Otherwise, the following analytical development
is in fact equally valid for any multilayers constituted of arbitrarily oriented piezoelectric
materials and arbitrary layer thicknesses. The material constants of each layer and substrate
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Figure 1. Schematic of the studied (111)-GaAs/AlAs super-lattice structure and the coordinate
system used as well as the crystalline axes. The wide arrows symbolize the incident, reflected and
transmitted waves.

are defined by its stiffness c, piezoelectric e and permittivity ε tensors and mass density ρ. In
the working coordinate system x1x2x3, we assume the incidence plane to be x1x2, or parallel
to the (1̄10) plane in figure 1, and that all field quantities are uniform with x3. The matrix
form and numerical values of these tensors are given in the appendix for the SL configuration
illustrated in figure 1. For a different orientations and/or materials, the c, e and ε tensors are
required to be preliminarily transformed into the final working coordinates system by means of
the Bond method, for example.

To maintain the generality, let us consider a plane wave (phonons) propagating in the
(x1x2) plane with an arbitrary polarization defined by a generalized displacement vector [21]

u ≡ [u1; u2; u3; φ] ∼ u0 exp[jω(t − s1x1 − s2x2)] (1)

where j ≡ √
(−1) and si ≡ ki/ω, k is the wavenumber vector, ω the angular frequency,

and si the slowness component in the xi -direction. The subscript i goes from 1 to 3. φ

is the electrical potential. For convenience, we introduce a state vector τ defined by τ ≡
[T12; T22; T32; D2; v1; v2; v3; jωφ], with v ≡ ∂u/∂ t = jωu. Herein and after, the MATLAB
Software matrix notation3 is adopted and a bold letter symbolizes either a vector or a matrix
variable. Ti2 represent the components of the stress tensor normal to the layering, and D2 is the
electrical displacement along x2. The so-defined vector τ is continuous at each interface in the
SL structure provided no metallization is present. Considered as an unknown function of x2 for
each layer, τ is the solution of the following system of first-order vector-matrix ODE [19, 20]:

dτ

dx2
= (jω)Aτ . (2)

3 For example, M(2:4, 1:3) means the matrix containing the 2nd to 4th rows of M and the 1st to 3rd columns of M;
M(2:4,:) means the same row selection of M but all the columns of M, and a new row is indicated by a semicolon.

3



J. Phys.: Condens. Matter 19 (2007) 186209 V Zhang and B Djafari-Rouhani

The local state matrix A(8 × 8) in (2) is of the form

A =
[

G12G−1
22 s1

(
G12G−1

22 G21 − G11
)

s2
1 + ρ0

G−1
22 G−1

22 G21s1

]
. (3a)

In (3a), ρ0 is a 4 × 4 matrix of which all elements are zero except the first three main diagonal
ones, which are equal to the mass density ρ, and the 4 × 4 matrices G jl are given in terms of
the material constants by

G jl =
⎡
⎢⎣

c1 j1l c1 j2l c1 j3l el1 j

c2 j1l c2 j2l c2 j3l el2 j

c3 j1l c3 j2l c3 j3l el3 j

e j1l e j2l e j3l −ε jl

⎤
⎥⎦ , j, l = 1, 2, 3. (3b)

In addition to the material and orientation of the relevant layer, the state matrix A depends on
the x1-slowness (s1), or the incidence angle, but it is independent of the frequency. This is due
to the form we are using for the state vector, which is different from the one used in Braga and
Herrmann [22].

The general solution of the ODE system (2), well known from linear system theory, can be
written out as a linear combination of the modal solutions [20]:

τ (x1, x2, t) = QE(x2)yejω(t−s1 x1) (4)

where E(x2) ≡ e−jωS2 x2 , with s2 being a diagonal matrix, we call it the spectral matrix,
constructed with the elements s(m)

2 (m = 1–8), and Q ≡ [. . . , Q(m), . . .] is an eight-dimensional
modal matrix. Here, −jωs(m)

2 ≡ λ(m) is the mth eigenvalue of the matrix [jωA], and Q(m) is the
λ(m)-associated eigenvector, determined with a certain norm. Finally, y ≡ [. . . ; y(m); . . .] is
the modal amplitude vector to be specified by the boundary conditions. All these quantities are
implicit functions of s1 and of the material constants. To be definite, we assume throughout the
paper that the incident modes are numbered 1–4 and the reflected modes 5–8. Thus m = 1, 2, 3
and 4 refer to the EM (electromagnetic), L, T and SH acoustic modes, and m = 8, 7, 6 and
5 to the corresponding reflected ones, respectively. The form of the solution in (4) applies
to any layer when using the appropriate material constants, i.e. the relevant eigenvalues and
eigenvectors. In particular, at the top (x2 = Hn) and bottom (x2 = Hn − hn) surfaces of the
nth layer, it reads

τ+
n ≡ τ n(x2 = Hn) = Qnỹ+

n (5a)

and

τ−
n ≡ τ n(x2 = Hn − hn) = Qnỹ−

n (5b)

with ỹ±
n ≡ E±

n yn , E+
n ≡ En(x2 = Hn), and E−

n ≡ En(x2 = Hn − hn). Herein and after, the
common scalar factor exp[jω(t − s1x1)] is omitted except when it is necessary. Eliminating
from (5a), (5b) the common amplitude yn yields a relation between τ+

n and τ−
n

τ+
n = Pnτ

−
n (6)

via the layer transfer matrix Pn which, expressed in terms of the modal matrix, is of the form

Pn ≡ QnE0
nQ−1

n , (7)

where E0
n ≡ e−jωs2hn is the so-called propagator, with s2 denoting the spectral matrix of the

layer n.
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3. Floquet dispersion relation and slowness surfaces

We begin by considering an infinite periodic SL having the unit cell transfer matrix Pc. For an
arbitrarily anisotropic structure exhibiting a spatial periodicity in one direction, Floquet theory
is perhaps the most appropriate tool to model the behaviour of the phonons. The dispersion
relation of the phonons in a SL is uniquely deduced from the eigenvalues of Pc. According to
the Floquet theorem, dynamic variables at any coordinate x2 in a periodic medium of period h
are related to those at x2 + h by [22, 23]

τ (x2 + h) = e−jkfh τ (x2). (8)

kf in (8) is the yet unknown SL wavenumber, or the Floquet wavenumber. When applied at
the boundaries of the first unit cell (x2 = 0), (8) gives τ (h) = e−jkfhτ (0). On the other hand,
applying the transfer matrix relation (6) to the same cell yields τ+

2 = Pcτ
−
1 . Then, by equating

the right-hand sides of these two relations and noting τ+
2 ≡ τ (h) and τ−

1 ≡ τ (0), we obtain

(Pc − λfI)τ (0) = 0 with λf ≡ e−jkfh (9a)

and I is a 8 × 8 identity matrix. Equation (9a) has eight eigenvalues λ
(m)

f , (m = 1–8), which
are the roots of the characteristic equation

det(Pc − λ f I) = 0. (9b)

To analyse the relationship between the eigenvalues and properties of the Floquet waves, we
write

λf ≡ ρe−j� = ρe−jθ , (10a)

where ρ and � are the modulus and argument of λf. Identification of λf from (9a) and (10a)
yields

kfh = j ln(ρ) + (θ + M2π), (10b)

where M is an integer such that −π < θ � π . The eight associated Floquet wavenumbers k(m)
f

and eigenvectors τ
(m)

f (m = 1–8) determined from (9a) and (9b) define what are called Floquet
waves. They can propagate independently in an unbounded periodic medium (i.e. a perfectly
periodic SL), but they must be coupled together when boundaries or some foreign (defect)
layers are present [22]. The mth Floquet wave has a polarization given by τ

(m)

f and a velocity
related to k(m)

f . It consists of a combination of classical plane bulk modes in the homogeneous
layers and represents the net wave motion after multiple reflections and refractions through the
layering. When k(m)

f is real, which requires ρ = 1, the Floquet wave (mode m) is propagating.
The corresponding frequencies are then in the pass bands. For ρ �= 1, k(m)

f is complex, or
purely imaginary if θ = 0. The corresponding Floquet wave cannot propagate in the relevant
frequency bands, which are named stop bands or frequency gaps. As a result, a periodically
layered structure can behave as a mechanical filter. The choice of the Brillouin branch, i.e. the
integer m, does not affect the general solution since both the polarization and velocity of a
Floquet wave only depend on λf, namely the values of ρ and θ . This indeterminacy in the
real part of the Floquet wavenumber is a characteristic of waves propagating in the periodic
structures. We would also like to point out that the determinant of Pc is not always equal to 1
except for s1 = 0 (normal incidence), though its modulus is always unity for any s1 value. If
Im(det[Pc]) �= 0, at least two eigenvalues, say λ

(ν)

f , have unit magnitude. In this case, k(ν)

f is
real and, for an anisotropic configuration, 1/λ

(ν)

f is not necessarily an eigenvalue of the matrix
Pc even if λ

(ν)
f is. This stems from the fact that the angles of incidence and reflection are not

the same [6, 22]. As a general rule, the eigenvalues of Pc are ‘either of unit magnitude or
else occur in pairs such that one is the complex conjugate of the reciprocal of the other’ [22].

5
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Degeneracy occurs when λ
(m)

f = ±1, i.e. ρ = 1 and θ = 0 or π , or equivalently k(m)

f h = 2Mπ

or (2M + 1)π . This happens when the mth Floquet wave propagates parallel to the layering
and remains standing in the normal direction.

Knowing the Floquet wavenumbers, we can by analogy with the classical plane waves
draw Floquet slowness curves by defining

s(m)

f ≡ k(m)

f /ω, m = 1–8 (10c)

s(m)
f is considered as the Floquet slowness of the mth mode. We can write (10b) with M = 0

s(m)

f = [j ln(ρ) + θ ]/ωh. (10d)

A real s(m)

f means a propagating mode (the corresponding frequencies are situated in a pass
band), and a complex or purely imaginary s(m)

f an evanescent mode (frequencies in a stop band).
The most remarkable feature of the dispersion spectrum of waves in the periodic structures,
i.e. the existence of the stop bands (or gaps) and pass bands of frequency, can be observed from
two different forms of the dispersion relations. Floquet wavenumbers plotted against frequency
for a given incidence angle pertain to the dispersion relations (kf − ω, |s1), while wavenumbers
as a function of the incidence angle for a fixed frequency permit us to draw the slowness curve
diagrams that we call dispersion surfaces (sf − s1, |ω).

Now, we take for numerical investigations the same configuration as studied by Kato [6]
but we aim to analyse the L and T phonons in addition to the SH ones. The values of h1 and
h2 are assumed to be 19.56 and 48.9 nm, respectively, the cell thickness (h = h1 + h2) thus
equals 68.46 nm, cf figure 1. Let Pc = PBPA be the unit cell matrix, where PA and PB denote
the transfer matrix of the layers with odd (AlAs) and even (GaAs) number, respectively. They
are computed from (7) by using the appropriate modal (Q) and spectral (s2) matrices and hn .
Figure 2(a) shows the dispersion curves of the SH phonons, together with the small imaginary
part in the stop bands of the Floquet wavenumbers kf. They were calculated for an oblique
incidence of 15◦ from the [111] direction. The position of the stop bands kB for the SH phonons
was determined in closed form in [6], and the locations of the points (kB, ωB) in kf−ω space are
on some straight lines (L1, L2) with a given slope, this means that kB is directly proportional
to the Bragg frequency ωB (see figure 2(a)). The dispersion curves of the L and T phonons are
plotted in figures 2(c) and (d). They confirm that, in oblique incidence, the stop bands of the L
and T phonons, like the SH ones, appear inside the folded zone rather than at the zone centre and
the zone edges, and no straight lines are evident to link all gap positions. The small imaginary
part of kf for the coupled L and T phonons, shown in figure 2(d), allows one to observe more
easily the positions of the gaps. These forbidden bands inside the folded Brillouin zone result
from the so-called ‘inter-mode Bragg reflection’ [10, 24], which occur as a consequence of the
mixing of different phonon modes [25] having a propagation direction oblique to the interfaces.
For the SH phonons, enhanced reflection of them inside the gaps is expressed by |Tr[Pc]| > 2,
and the condition for the frequency pass bands by |Tr[Pc]| � 2. When the SH phonons are
the only ones, the extinction rule is satisfied for |Tr[Pc]| = 2 when the reflection is totally
suppressed [6]. For the coupled L and T phonons, these relations are no longer valid. From
figure 2(b), Tr[PLT] plotted against frequency, no evident connection can be observed between
its behaviour and the band structures shown in figures 2(c) and (d) as opposed to the SH case
where the limits of the bands correspond to |Tr[Pc]| = 2. In an approximation assuming the
constituent layers to be isotropic and non-piezoelectric, this intractable transfer matrix for the
coupled L and T modes in the sagittal plane was first reduced to 4 × 4 and then approximated
by an amenable 2 × 2 transfer matrix as far as the frequency gaps are concerned [26].

Figure 3 shows some Floquet slowness diagrams obtained using equation (10d) for the
(1̄10) sagittal plane of GaAs/AlAs SL and at several frequencies. The results for homogeneous

6
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Figure 2. (a) Dispersion curves for a 15◦ incidence of SH phonons, red solid lines are imaginary
part of the Floquet wavenumbers (inside stop bands), magnified five times. (b) Trace of the cell
transfer matrix. (c) Real and (d) imaginary, parts of the Floquet wavenumbers for the coupled L
and T phonons at s1 = 10−4 s m−1, corresponding to an incidence of 32◦ for L and 18◦ for T
modes. Note that the electromagnetic branches (black dot–dashed lines) are reduced 50 times, and
the horizontal arrows in (a) and (c) indicate the positions of some very narrow gaps in which the
reflection is insignificant.

bulk materials GaAs and AlAs are also given in figures 3(a) and (b) for comparison purposes.
A Floquet slowness diagram consists of eight branches: two electromagnetic ones, which are
always complex due to the adopted quasi-static approximation reducing the real part to the
origin (s1 = sf = 0), and six acoustic ones, which may be either real or complex conjugate
depending on the values of s1 = k1/ω. Among acoustic branches, there are three types (L,
T and SH polarized) of phonons, each type consists of an outgoing and an incoming mode.
Outgoing (incoming) modes associated with a complex slowness sf decay (grow) exponentially
along the positive x2 direction normal to the layering. We observe from figure 3(c) that, at
low frequencies (up to f = 20 GHz), acoustic branches remain real until at a sufficiently
large s1 the SL behaves like a homogeneous medium of some averaged constants with little
dispersion. It is in this frequency range that the ‘homogenization’ idea applies [23, 27, 28].
For increasing values of f above 30 GHz, the dispersion becomes more and more significant,
as can be noted by comparing the patterns in figures 3(d)–(f). These results are compatible
with those deduced from figures 2(a) and (c) where the dispersion curves kf( f ) are seen, for
f � 20 GHz, to be linear in frequency, meaning a constant velocity. Figures 3(d)–(f) also show
that, for a fixed frequency, the dispersion sensitivity of a specific Floquet mode depends on s1-
values, i.e. incidence angles. The angles ϕ of incidence (m = 1–4) and reflection (m = 5–8)
are related to the s1 value by tan ϕ(m) = s1/s(m)

2 , s(m)

2 being the bulk slowness of the relevant
partial mode in the substrate. Floquet slowness diagrams are cuts in the dispersion surfaces
along a plane and at a constant frequency. Their counterpart in 2D and 3D phononic crystals is
called the ‘equifrequency surface’ [29–31] or ‘constant frequency surface’ [24]. Represented
in the reduced zone scheme as in figure 3, they clearly show the evanescent modes which have

7



J. Phys.: Condens. Matter 19 (2007) 186209 V Zhang and B Djafari-Rouhani

Figure 3. Floquet slowness diagrams for the (1̄10) plane of GaAs/AlAs SL: black solid lines are
real parts and blue dashed lines are imaginary parts. Classical bulk waves in bulk GaAs (a) and AlAs
(b). (c) At frequencies lower than the first stop band, a SL behaves like a homogeneous medium
of somewhat averaged properties. (d)–(f) At higher frequencies, stop bands appear for certain s1

values, indicated by Im(sf) �= 0.

a non-zero imaginary part, and help identify the origin of a particular gap in relation to the
dispersion curves in figure 2.

4. Transmission and reflection rates

Results obtained previously are rigorous only for a perfect (infinitely long and periodic) SL.
For a finite SL sandwiched in between two homogeneous semi-infinite substrates, as depicted
in figure 1, or a SL embedding one or more otherwise perfect foreign layers, Floquet theory
is, strictly speaking, not valid, although it predicts approximate results if the number of layers
is not too small. We now consider the transmission and reflection characters of a finite SL
structure. The continuity of the state vector τ at the interface separating the (n + 1)th and nth
layers is τ+

n = τ−
n+1. Substituting in this relation their expressions from (5a) and (5b) leads

to ỹ−
n+1 = Q−1

n+1Qnỹ+
n . With repetition of the above operation, we can get a relation between

amplitudes in the substrate (yS) and in the detector (yD):

ỹD ≡ [a]ỹS, with [a] = Q−1
D PN

c QS (11)

where N is the number of unit cells comprising the finite SL, and the subscripts D and S refer
to the detector and substrate, respectively. The a matrix represents the finite SL transmission

8
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matrix for the non-normalized amplitudes. It should be noted that the form of a using PN
c is

valid because all layers with even numbers are assumed to be of the same material, orientation
and thickness, and so are the layers with odd numbers. Otherwise, the transfer matrix of the
finite SL should be expressed as a cascading product of the individual transfer matrices. As
mentioned in the previous section, the eight eigenmodes of a piezoelectric material are arranged
into two groups of four modes each, namely the outgoing and incoming ones. In what follows,
the eigenvalues and the associated eigenvectors of the phonons in the detector and substrate are
assumed to have been arranged such that the outgoing (both propagating and decaying) modes
in the x2 direction are ordered in the first group, and the incoming ones follow.

The time-averaged acoustic energy flux associated with the lattice vibration of (1) is
expressed in terms of the generalized Poynting vector as p j = −(1/2) Re(∗vT j), with v the
generalized particle polarization velocity and T j the stress components in the x j -direction; thus
T2 = τ (1:4). The left ∗ means the transposed complex conjugate. The x2-directed power flow
is obtained from

p2 = − Re(∗vT2)/2 = Re(∗ỹPỹ) (12)

with P ≡ −∗Q(5:8, :)Q(1:4, :)/2, an eight-dimensional matrix. These expressions hold for
both the detector and the substrate provided that the involved Q matrix is appropriate to the
material layer in which p2 is being considered. Thus the following unique expression is used
for the power density of the phonons in both the detector (with subscript x = D) and the
substrate (with subscript x = S) as

P2x = Re(∗ỹx Px ỹx) (13)

with Px ≡ −∗ Qx(5:8, :)Qx(1:4, :)/2. The amplitude yD(5:8), which represents the reflected
phonons in the detector layer, should vanish since no reflected phonons are assumed. This
allows us to rewrite (13) for the detector as

p2D = Re(∗ ỹD(1:4)PD(1:4, 1:4)ỹD(1:4)). (14)

Introducing ỹ+
x ≡ ỹx(1:4) and ỹ−

x ≡ ỹx(5:8) to shorten notations (x = D or S), and using
the four sub-matrices of PS, we can express p2S from (13) for the substrate by the sum of four
terms:

p2S = Re[∗ỹ+
S PS(1:4, 1:4)ỹ+

S + ∗ỹ−
S PS(5:8, 5:8)ỹ−

S

+ ∗ỹ+
S PS(1:4, 5:8) + ỹ−

S + ∗ỹ−
S PS(5:8, 1:4)ỹ+

S ]. (15)

The first term in the square brackets of (15) represents the energy flowing in the positive x2

direction, due to the x2-propagating phonons; the second one corresponds to the energy flowing
in the negative x2 direction due to the phonons reflected by the substrate–SL interface. The last
two terms arise from the interaction between incident and reflected phonons.

Now, applying the orthogonality among the eight partial (eigen) modes, Q(m) involved
in the Px matrix defined after (13), we were able to demonstrate that [21] the Px matrix has
the following properties: ∗Px = −Px when the eigenvectors Q(m) (m = 1–8) are properly
normalized. These properties allow us to write (14) as

p2D = Re
4∑

m=1

PD(m, m)|ỹD(m)|2. (16)

Let p+
2S be the power density of the incident phonons in the substrate, and p−

2S that of the
reflected ones. The same reasoning permits us to write (15) as

p2S ≡ p+
2S + p−

2S, (17)
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with

p+
2S = Re

4∑
m=1

PS(m, m) |ỹS(m)|2 (18a)

and

p−
S = Re

8∑
m=5

PS(m, m) |ỹS(m)|2 . (18b)

Moreover, it was also demonstrated that the diagonal elements corresponding to any bulk mode
m (i.e. for real s(m)

2 ) are equal to ±1 provided that the eigenvector Q(m) is normalized such
that ∗Q(5:8, m)Q(1:4, m) = −(±2) (here the upper sign refers to the incident modes and
the lower one to the reflected modes). For the non-propagating modes, for which the value
of s(r)

2 is complex, the above normalization fails and the corresponding diagonal elements
are identically zero, meaning that they contribute nothing to the phonon energies p2D and
p2S [21]. For example, since the s(1,8)

2 values are always complex, the powers associated with
the electromagnetic modes are identically zero. If the incidence is due to the L phonons, then
both the T and SH phonons are propagating for all incidence angles. If the incident phonons
are of the slow shear mode, then the L and fast shear modes are not propagating so that the
corresponding energies are null unless the incidence is close enough to the normal. When
the fast shear phonons are incident, whether the L mode contributes depends on the incidence
angle, but the slow shear mode does not, being propagating for all angles. The result is that
those terms of Px(m, m) in (16) and (18) that are associated with complex s(r)

2 can be removed
from the summation.

We now relate the amplitudes of the incident and reflected phonons by defining some
reflection and transmission matrices. Applying ỹ−

D = 0 in (11) leads to

ỹ−
S ≡ [r]ỹ+

S with [r] = −[a(5:8, 5:8)]−1a(5:8, 1:4) (19)

where [r] is the amplitude reflection matrix. Eliminating ỹ−
S from (11) yields

ỹ+
D ≡ [t]ỹ+

S with [t] = a(1:4, 1:4) + a(1:4, 5:8)[r] (20)

where [t] is the amplitude transmission matrix. The power transmission (T ) and reflection (R)
rates are defined as the ratio of the squared amplitudes, i.e. given by

|ỹ−
S (n)|2 ≡ R(n, m)|ỹ+

S (m)|2 with R(n, m) = |t (n, m)|2 . (21)

and

|ỹ+
D(n)|2 ≡ T (n, m)|ỹ+

S (m)|2 with T (n, m) = |t (n, m)|2 . (22)

Equations (16)–(20) and the above stated properties of the Px matrix have been accounted for
in arriving at (21) and (22), with n, m running over L, T, SH.

When the incident phonons come from the only SH mode (m = 4), one has yS(4) �= 0
and yS(1:3) = 0. This can happen only if the SH is uncoupled with the other modes. Any
incidence confined within the (1̄10) plane pertains to such a situation. In the same way, though
the number of reflected modes is four in the most general case, mode uncoupling leads to
yS(5) �= 0 and yS(6:8) = 0. Similarly, for the transmitted phonons in the detector, the only
non-null amplitude is yD(4). Equations (14) and (15) for such a specific configuration reduces
to

p2S = |ỹD(4)|2 (23)

and

p2S = |ỹS(4)|2 + |ỹS(5)|2. (24)

10
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Figure 4. (a) Transmission (T ) and reflection (R) rates of SH phonons in a finite SL with five unit
cells (N = 5) and the same incidence angle as in figure 2(a). (b) T rate obtained with N = 10.
(c) Dispersion curves and (d) T rates of the uncoupled L and T phonons at normal incidence with
N = 5.

The R rate of the SH phonons reflected by the SL is

R ≡ p−
2S

p+
2S

= yS(5)

yS(4)
= |r |2 (25a)

where r is the amplitude reflection coefficient of the SH phonons and can be calculated from
(19). The T rate of the SH phonons from the substrate to the detector is

T ≡ p2D

p+
2S

= yD(4)

yS(4)
= |t|2 (25b)

where t is the amplitude transmission coefficient of the SH phonons and can be calculated
from (20). In the (1̄10) plane, however, if the incident phonons originate from an electrical
excitation, both the L and T polarized phonons can always be transmitted and reflected but
the SH is not concerned. The plane interface between layers imposes a coupling between the
L and T modes. Their amplitudes are in effect related through (11). In other words, though
yD(4) = 0 when yS(4) = 0, one cannot separately fix the amplitude of the L and T modes.
When the incidence is out of the (1̄10) plane, all three modes, L, T and SH, will be coupled
together.

5. Numerical results

Transmission (T ) and reflection (R) rates of phonons in a SL structure were calculated for
different values of the slowness s1 and cell number N . The R and T rates of the SH phonons
were calculated versus frequency by using equations (25a) and (25b). They are shown in
figures 4(a) and (b), respectively, for N = 5 and 10 and assuming the same incidence angle

11
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Figure 5. T and R rates of the coupled L and T phonons in a finite SL with N = 5. (a) L incidence,
(b) T incidence with s1 = 10−4 s m−1. Blue solid lines (at the top), L → L and T → T; red
dashed lines, L ↔ T transmission; black solid lines (at the bottom), L → L and T → T; magenta
dotted lines, L ↔ T reflection. The arrow indicates where a strong mode conversion occurs due to
‘anti-crossing’ between the L and T dispersion branches.

(15◦) as in figure 2(a). We remark that T + R = 1 in figure 4(a) and the sum of the two
rates of any intra-mode equals unity at any frequency. The very narrow stop bands (around 70
and 140 GHz, marked with an arrow in figure 2(a)) do not cause a noticeable dip or peak in
the transmission and reflection spectra. In fact, these frequencies satisfy the extinction rules
suppressing the reflection. The T rate is much lowered (to about 0.1) in the stop bands when
the cell number is doubled (N = 10 against 5). At normal incidence (s1 = 0), both the
SH and T phonons have the same velocity, and thus the same dispersion curves, and they are
uncoupled from each other and from the L phonons. As seen from the dispersion curves plotted
in figure 4(c) for the uncoupled L and S (shear) phonons, no gaps appear inside the Brillouin
zone due to absence of the inter-mode coupling. The stop bands appear only at the centre
(kf = 0) and edges (kfh = ±π ) of the folded Brillouin zones; this is because Floquet velocity
of a mode remains unchanged when the propagation direction is inverted, as can be observed
from figure 3 for s1 = 0. The curves of the T rates in figure 4(d) show more clearly that the
width of a stop band and the distance between two neighbouring ones are larger for the L mode
than for the S mode. The R rates, not shown, were verified by taking (22) to be equal to (1−T )

for both the L and S modes.
The T and R rates of the coupled L and T phonons at the same incidence as in figure 2(b)

are plotted in figure 5 for N = 5 and in figure 6 for N = 10. We have plotted the R-
rates in addition to the T rates because their relationship is not as easily figured out as in
figures 4(b) and (d). The T rate of either L ↔ L or T ↔ T mode is close to unity except
inside their respective gaps. The T rates in figures 5 and 6 remain nearly unity in those narrow
gaps, marked with a horizontal arrow in figure 2(c) and for which the imaginary part of kf is
negligibly small in figure 2(d). This implies that the reflection is insignificant in these gaps
since these frequencies approximately satisfy the extinction rule. The transmission due to the
mode conversion in figure 5 is generally rather small (<0.05) except around the frequency of
about 120 GHz, marked with an arrow, where TLT (T mode in the detector converted from
incidence in the substrate of the L mode onto and through the SL) and TTL (L mode in the
detector due to T-mode incidence) take on a rather high value (>0.6). In the same range, TLL

12



J. Phys.: Condens. Matter 19 (2007) 186209 V Zhang and B Djafari-Rouhani

Figure 6. T rate (top panel) and R rate (bottom) of the coupled L and T phonons in a finite SL with
N = 10 for an incidence of L (left panel) and T (right) phonons. The incidence angle is defined
by s1 = 1.5 × 10−4 s m−1. Blue solid lines, L → L and T → T transmission and reflection;
red dotted lines, L ↔ T converted transmission and reflection. The arrow indicates where a strong
mode conversion occurs due to ‘anti-crossing’ between the L and T dispersion branches.

and TTT (transmitted modes keeping the same polarization) exhibit a noticeable dip. This occurs
outside any frequency gap. Recall that the term ‘gap’ we use in this paper means a continuous
frequency domain in which the wavenumber kf is complex or at least pure imaginary. In fact,
the phenomenon, as already remarked by Kato et al [5], is due to the ‘anti-crossing’ of the
L and T branches of the dispersion curves in figure 2(c). It occurs for oblique incidence in
SL structures and depends strongly on the SL length (number N). Our results confirm this
observation, as seen from comparing figure 5 with the top panel of figure 6. For N = 5, there
is a wide single lobe, which seems to split into three narrow ones on all transmission curves
when the value of N is doubled (N = 10). In the latter case, the SL reflection effects are much
enhanced (by nearly 0.8 in most gap ranges) and the lobes become narrower. The conversion
rate inside a gap and/or the anti-crossing zone will also strongly depend on the existence and
the thickness of a foreign layer inserted into the structure, say at the entrance or the exit of
the SL. By means of this property, it will become possible to control the mode conversion
efficiency. It is also interesting to point out that not all dips in a transmission curve, TLL at
about 30, 50, and 65 GHz for example, are associated with the same physical phenomenon.
Around 50 GHz, the dip of TLL corresponds to a peak R rate of the same polarization (RLL)

with a negligible mode conversion in both the T and R rates (TLT and RLT), while the other two
dips of TLL are associated with the peaks of R of the different polarization (RLT), meaning a
strong mode conversion around this frequency in the reflection spectrum. The same is true for
the T incidence, with the three frequencies slightly shifted. Though the general features of the
T and R curves in a gap display only slight modifications for N varying from 5 to 10 unit cells,
their dependence on the cell number N is expected to be significant for N larger than several
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Figure 7. (a) Dispersion curves for a 22◦ incidence of SH phonons: red solid lines in closed
ellipse form, imaginary part of kf. (b) Corresponding T and R rates of SH phonons with N = 5.
(c) Real and (d) imaginary, parts of kf for the coupled L and T phonons at s1 = 1.5 × 10−4 s m−1

corresponding to an incidence of respectively 53◦ for L and 30◦ for T modes. Note that the
electromagnetic branches (black dot–dashed lines) are reduced 20 times.

tens in a GaAs/AlAs SL (inversely proportional to the impedance contrast). These behaviours
can find an explanation from the dispersion curves displayed in figure 2(c), which show clearly
the nature of a given gap among the three mentioned ones: the gap around 50 GHz is due to
the intra-mode interaction, the other two are due to the inter-mode interaction. The dispersion
spectra inherently do not repeat in a simple way with increasing frequency due to the incidence
being oblique. The sum of the four curves in either figure 5(a) or 5(b) is equal to unity, as
is required by energy conservation, and is numerically verified to be true. The same remark
applies to the four curves in either the left or the right panel of figure 6.

The dispersion and transmission spectra of Floquet waves were also investigated as a
function of incidence angle by considering different s1 values. Results given in figures 7 and 8
were computed with s1 = 1.5 × 10−4 s m−1, which corresponds to a more oblique incidence
(22◦, 30◦, and 53◦ for the SH, T, and L phonons, respectively). Comparing figure 7(a) with 2(a),
we see that, for SH phonons, the width and separation of both gaps are a bit enlarged so that the
last one goes out of the frequency range shown in the figure. Enlargement of the gaps is more
noticeable for the coupled L and T phonons, as seen from figures 7(c) and (d). By comparing
them with figures 2(c) and (d) we observe a more significant dispersion, with a larger magnitude
of the imaginary part of the Floquet wavenumbers. The T rates at this incidence are presented
in figure 8 for N = 5. We observe that the mode-interaction becomes stronger with wider
transmission dips for this more grazing incidence. Compared with figure 5, the top panel of
figure 8 shows that both the width and position of the dips vary with incidence angle, and the
transmission due to mode conversion stays at a low level, hardly exceeding 0.2 except around
100 and 180 GHz where it reaches 0.4. In the frequency ranges corresponding to the gaps in
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Figure 8. T (top panel) and R (bottom) rates of the coupled L and T phonons in a finite SL
with N = 5 for an L (left panel) and a T (right) phonon incidence at an angle defined by
s1 = 1.5 × 10−4 s m−1. The signification of curves labelling is the same as used in figure 6.

figures 7(c) and (d), the reflection is enhanced in general, the R rate even reaches 0.9 in the
band gap just below 50 GHz for L ↔ T mode conversion. In addition, we remark that inside
this range of frequencies all four transmission rates are very weak (<0.1). This is consistent
with the dispersion curves displayed in figures 7(c) and (d) for the infinite SL, which clearly
show the overlapping of the band gaps for both the L and T modes. Other similar gaps exist
near 90, 130 and 175 GHz, but they still allow a significant transmission (>0.2) to take place
for the converted mode. The phenomenon of inter-mode anti-crossing is not observed at this
incidence. Results for N = 10, not shown here for lack of space, are rather similar except that
the transmission dips and the reflection peaks are more pronounced: most of the R rates exceed
0.8 and even reach an almost total reflection. It is worthwhile pointing out that for sufficiently
grazing incidence (s1 value approaching the bulk-threshold one, sc), a T incidence cannot any
longer give rise to the L phonons due to impossible mode conversion, and instead an interface
mode can result from the lateral propagation along the layering at sufficiently high frequencies
and for s1 > sc. Before ending, we recall that the dispersion curves in figures 2, 4(c), 7(a)
and (c) are obtained assuming a perfect SL, i.e. the cell number N → ∞, while the R and T
curves are computed for some SLs of finite length.

6. Conclusions

In this paper, a theoretical model has been presented and semi-analytical expressions derived
which allow the dispersion relations and the transmission (T ) and reflection (R) properties
of the coupled longitudinal and shear phonons to be numerically analysed. The unit cell
transfer matrix Pc of the SL contains full information about the position and width of the stop
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bands of Floquet modes in a perfect SL, and the T and R rates completely characterize the
phonon motion in a SL of finite length or including some foreign layers with mode interactions
accounted for. Closed-form expressions of the T and R rates are derived in terms of the modal
and propagator matrices. All of these quantities are readily computable with little programming
implementation effort. It suffices to resolve an eigenvalue problem (see (2)) by means of any
available software, MATLAB for example for one to have numerically the modal and spectral
matrices Q and s2 which then allow all calculations to be done straightforwardly. The state
matrix of the associated ODE system has been given in terms of the material constants in
addition to the parameter s1 which refers to the incidence angle (see equation (3)). In the most
general case as we have considered in this paper, no analytical results can be extracted from the
unit cell transfer matrix which is algebraically much more complicated than its SH counterpart;
the information it contains has to be numerically brought to light for the coupled phonon modes.
The dependence of both the form and width of the phonons gaps on the cell number of the SL
has also been investigated.

No absolute gaps were found in this SL configuration with the used parameters, due to
the relatively narrow band gaps for both intra-mode and inter-mode interactions. There are two
main physical reasons for this: one is the low impedance mismatch between the GaAs and AlAs
materials, the other one is their weak piezoelectric coupling. However, the model established
in this paper provides a powerful and general simulation tool allowing one to investigate SL
made of materials with much higher impedance ratio (e.g. rubber and lead) or which are
more strongly piezoelectric (AlN, GaN or PZT). In future works, it would be interesting to
investigate how and to what extent the piezoelectric effects can affect the band structures of
acoustic modes in a periodic 1D-SL or in higher-dimensional (2D and 3D) phononic crystals.
This now becomes feasible using the results derived in the present paper. Application of the
given model to analysing finite SL systems is straightforward, including SL with multilayer unit
cells, double-barrier systems, multi-SL structures, semi-infinite SL as well as combinations of
a finite SL with one (or two) semi-infinite homogeneous substrates which support surface (or
interface) modes. New phenomena and effects are often associated with the defect modes
resulting from local resonance of the complex systems. The presented model is expected to be
useful in the design of SL-based filtering and de-multiplexing devices functioning either in the
hypersonic tens of GHz range using acoustic phonons of nanometre structures or in sonic and
ultrasonic frequency ranges using elastic-wave refraction phenomena such as focusing with
a flat lens (negative refraction) and directional acoustic source by means of the defect mode
cavity resonance (acoustic tunnelling).

Appendix. Physical constants of (111)-oriented GaAs and AlAs materials

In the final x1x2x3 system obtained by two consecutive rotations from the natural
crystallographic axes XY Z system, material constants tensors can be put into a single matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 C16 e11 e21 0
C12 C22 C12 0 0 0 0 e22 0
C13 C12 C11 0 0 −C16 −e11 e21 0
0 0 0 C44 −C16 0 0 0 e21

0 0 0 −C16 C55 0 0 0 −e11

C16 0 −C16 0 0 C44 e21 0 0
e11 0 −e11 0 0 e21 ε11 0 0
e21 e22 e21 0 0 0 0 ε11 0
0 0 0 e21 −e11 0 0 0 ε11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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With x2 parallel to [111] and x1 parallel to [112̄], the values of the matrix elements for GaAs
have been obtained as C11 = 14.57, C12 = 3.587, C13 = 4.483, C16 = 1.268, C22 = 15.467,
C44 = 4.147, C55 = 5.043, e11 = 0.1306, e21 = 0.0924, e22 = −0.1848, ε11 = 1.167,
ρ = 5360 kg m−3; and those for AlAs as C11 = 14.75, C12 = 3.880, C13 = 4.790,
C16 = 1.287, C22 = 15.66, C44 = 4.070, C55 = 4.980, e11 = 0.1837, e21 = 0.1299,
e22 = −0.2598, ε11 = 0.8907, ρ = 3760 kg m−3. In the above, the coefficients ‘C’ are in units
of 1010 N m−2, ‘e’ in C m−2 and ‘ε’ in 10−10 F m−1.
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